Kinetic stability of negative-triangularity plasmas
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1. Introduction & Methods

Introduction Methods The kinetic MHD(W ,;,..:ic) perturbed potential energy is defined as [3][4]:

« Analysis is based on DIlI-D shot #193802, which features a 20Weinetic + 1 n = 20Wdear M2 dipdedEdu(d3"of)

« Negative triangularity (NT) is an attractive plasma configuration , , o , ,
triangularity scan from positive to negative shaping (PT — NT).
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confinement [1]. - Stability limits for n=1~5 were computed using DCON and its

kinetic DCON, via pressure scan at fixed equilibrium. Although dissipation breaks the energy principle, §Wyneric rfemains a useful stability
Despite  these advantages, NT plasmas uniquely lack proxy since the beta limit shifts little due to the steep gradient near 0.

second-stability access for edge ballooning modes and have lower
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OWiinetic + (166) 4n;§WL < 0 (c : plasma wall coupling)
global B, limits than PT plasmas [2].

The Kruskal-Oberman (KO) captures | The Chew-Goldberger-Low (CGL) limit
kinetic energy from particle motion along | describes  double-adiabatic  pressure

Kinetic MHD stability in NT plasmas is expected to differ from PT

magnetic field lines on fast MHD time | response that emerges as wyp — oo

due to magnetic geometry and trapped particle dynamics.

N | iz | | scales, neglecting drift and collisions [5]. | suppressing orbit-resonant effects [6].
Pressure anisotropy from trapped particles is expected to have a o - s 2 s 2 | ”

e . . - o) = ———f1,07 o = lim ¢
stabilizing influence on kink and ballooning modes—unlike in PT. Fig 1. Equilibrium from DIII-D #193802, showing a shape scan from positive to negative triangularity. Jio 21T Iu Jegt 0 00 fias

2. n=1 Kkinetic stability 3. Low-n>1 Kkinetic stability

« Stability limits for the n=1 mode were computed

—e— |deal
across triangularities using ldeal MHD, KO, full kinetic, gl —— Kinetic

—e— KO e electron responses was also performed for n >
| —— CGL !

Full kinetic MHD analysis including both ion and

and CGL. Both ion and electron responses were

1 modes.

included, with electrons playing a significant effect.

. The ordering W, goq; < Wiineric < SWeey _ 7 | For n = 1,2, a direct-type equilibrium was used; for

known as a general trend, is confirmed [6]. n > 2, inverse-type equilibrium was applied for

more precise computation

In both PT and NT plasmas, the full kinetic response

In the positive triangularity (PT) case, modes n =

provides comparable levels of passive RWM
stabilization, with NT additionally exhibiting strong

1 ~ 3 all show instability in certain g, regions (i.e.,

0.0 : : | SW < 0).
6]

bounce-harmonic resonances from deeply trapped
particles.

Fig 2. Stability limit 8,'™" versus 6, obtained from Ideal, Kinetic, Kruskal- 8 = | N N However, the NT case demonstrates that kinetic
Oberman, and CGL models.

effects fully suppress instabilities for all modes

A bounce harmonic scan was performed, varying the | with n > 1 across the g, range.

maximum included harmonic number from 0 to 9

for different triangularities 8.

Bn
It reveals that in NT the pertu rbed potent|a| energy Fig 4. Perturbed potential energy 8W for toroidal modes n=1-5 from full _ - ‘W

. ) . kinetic MHD analysis across [, scan.
SW converges later then PT, indicating a significant

| —— Kinetic
— KO

2 4 6 ' unstable 6W for all n =1-4 modes, even with strong NT j— caL
Max Bounce Harmonic Number This behavior suggests that stronger coupling to 0 ' ' 3 4

) , T shaping. As triangularity decreases, the gap between the first Bn
Fig 3. SW convergence with bounce harmonics for various triangularities, deeply trapped particles are more influential in NT.

: o . : and second stabilitv reaions narrows. Fig 5. Perturbed potential energy §W from pressure scan
showing strong trapped-particle effects at high negative §. y reg at 5§ = —0.376 in different models for n = 2.

contribution from higher-order bounce harmonics. . Ideal MHD, KO, and CGL approximations vyield [— ideal T N \ B

4. Second stability regime 5. Application and future work

—0.376 . et onsion Application
In PT, the n=1,m=2mode grows and becomes unstable with

Increasing pressure.

In NT, the same mode becomes unstable at lower B, , consistent
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with NT's reduced stability limit. Beyond a certain point, however,

only in NT does the m=2 kink-like structure disappear, marking the

onset of a second stability regime.
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Fig 8. KSTAR #36167 (t = 5000 ms, Ip=313.9 kA, 6=—-0.102) with radial eigenfunctions at three locations overlaid.
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 |deal MHD stability analysis was performed for a KSTAR NT discharge.
= « A second stability regime at n = 1 was found, with negative m = 1,2 harmonics and §W > 0, consistent with DIII-D.
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Fig 6. Ideal MHD analysis in NT plasma showing W evolution and mode structure across B,  Investigate the mechanism behind the second stability region in NT plasmas, which remains theoretically unclear.
10 T « Observed in Fig. 10, where torque modification appears to enable access, further investigate how kinetic effects

6 — _0- 376 : 2nd most unstable solution
may facilitate entry into the second stability region.

6*_‘\/_\\ « After this certain point, the m =1 and m =2 harmonics exhibit « Extend the current upper-boundary PT-NT shaping scan in KSTAR to a full-boundary scan, enabled by the
| ‘ negative amplitudes, and their corresponding §W becomes positive broader shaping access expected after the KSTAR-II upgrade (see Fig.9), which would allow comprehensive

in both ideal and kinetic run. kinetic stability studies across the PT-NT space. ° St s . awso
1.5 15 51 ¢ s /. oW< 0
« One difference is that the full kinetic response produces a smooth ro I o !o_s Fig 9 Proposed PT-NT shaping scan \ i 2R Sk
trend, clearly showing that the m = 2 harmonic stops growing and 0s g o4 o equilibria for upcoming KSTAR i | /! e
decreases. T ’ \ T gg ) 0.2 :E' experiments before and after the KSTAR- = 3] . o1
N g *® 2 |l upgrade. (Contributed by Jaebaem Cho) 21 ¢ : !E AR s
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